
IJDCST @October Issue- V-1, I-6, SW-30
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

90 www.ijdcst.com

A Secure Key Server based Data Storage and forwarding

in Cloud
1A.Shalini, 2SreeRama Srikanth

1Dept of CSE,Marri Laxman Reddy Institute of Technology ,Dundigal,Hyderabad-500043, A.P, INDIA

2 Dept of CSE, Marri Laxman Reddy Institute of Technology ,Dundigal, Hyderabad-500043, A.P, INDIA

 Abstract— Cloud Computing has been envisioned as the next generation architecture of IT Enterprise. In contrast to traditional

solutions, where the IT services are under proper physical, logical and personnel controls, Cloud Computing moves the

application software and databases to the large data centers, where the management of the data and services may not be fully

trustworthy. General encryption schemes protect data confidentiality, but also limit the functionality of the storage system

because a few operations are supported over encrypted data. This method supports encoding over encrypted messages using

secure key servers and forwards the secure data. This method fully integrates encrypting, encoding, and forwarding. Suitable

parameters are suggested for the number of copies of message sent to storage servers. The storage servers are queried by key

servers. These parameters allow more flexible adjustment between the number of storage servers and robustness.

 Keywords— (Encoding, Decentralized erasure code, proxy re-encryption, threshold cryptography, secure storage system.)

I. INTRODUCTION

In cloud computing, moving data into the cloud offers

great convenience to the users since they do not have to

worry about the complexities of direct hardware

management. Users just use the services without being

concerned about how computation is done and storage is

managed. In this paper, we focus on designing a cloud

storage system for robustness, confidentiality, and

functionality. A cloud storage system is considered as a

large-scale distributed storage system that consists of

many independent storage servers. Security remains the

critical issue that concerns potential clients. Data

robustness is a major requirement for storage systems.

There have been many proposals of storing data over

storage servers.

 In this paper we address the main aspects related to

security of cloud storage. It presents an attempt to

propose an effective and flexible security policy and

procedures explicit to enhance the Data storage security

and forwarding in the cloud. One way to provide data

robustness is to replicate a message such that each

storage server stores a copy of the message. It is very

robust because the message can be retrieved as long as

one storage server survives. Another way is to encode a

message of k symbols into a codeword of n symbols by

erasure coding. To store a message, each of its codeword

symbols is stored in a different storage server. A storage

server failure corresponds to an erasure error of the

codeword symbol. As the number of failure servers is

under the tolerance threshold of the erasure code, the

message can be recovered from the codeword symbols

stored in the available storage servers by the decoding

process. This provides a tradeoff between the storage size

and the tolerance threshold of failure servers. A

decentralized erasure code is an erasure code that

independently computes each codeword symbol for a

message. Thus, the encoding process for a message can

be split into n parallel tasks of generating codeword

symbols. A decentralized erasure code is suitable for use

in a distributed storage system. After the message

symbols are sent to storage servers, each storage server

independently computes a codeword symbol for the

received message symbols and stores it. This finishes the

encoding and storing process. The recovery process is the

same.

 Storing data in a third party’s cloud system results

in risky data confidentiality. For good confidentiality for

messages in storage servers, a user can encrypt messages

by a cryptographic method before applying an erasure

code method to encode and store messages. When he

wants to use a message, he needs to retrieve the

codeword symbols from storage servers, decode them,

and then decrypt them by using cryptographic keys.

There are three problems in the above straightforward

integration of encryption and encoding. First, the user

has to do most computation and the communication

traffic between the user and storage servers is high.

Second, the user has to manage his cryptographic keys. If

the user’s device of storing the keys is lost or

compromised, the security is broken. Finally, besides

data storing and retrieving, it is hard for storage servers

to directly support other functions. For example, storage

servers cannot directly forward a user’s messages to

another one. The owner of messages has to retrieve,

decode, decrypt and then forward them to another user.

In this paper, we address the problem of forwarding data

to another user by storage servers directly under the

command of the data owner.

 The system model has two servers distributed storage

servers and key servers. It is risky to store cryptographic

keys in a single device. The user distributes his

cryptographic key to key servers that perform

cryptographic functions on behalf of the user. The key

servers are highly protected by security mechanisms. A

new threshold proxy re-encryption scheme is proposed in

this paper and integrated it with a secure decentralized

code to form a secure distributed storage system. This

encryption scheme supports encoding operations over

encrypted messages and forwarding operations over

IJDCST @October Issue- V-1, I-6, SW-30
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

91 www.ijdcst.com

 m1 c1

 mn cn

encrypted and encoded messages. The integration of

encoding, encryption, and forwarding makes the storage

system to efficiently meet the requirements of data

robustness, data confidentiality, and data forwarding. The

proposed system meets the requirements that storage

servers independently perform encoding and re -

encryption and key servers independently perform partial

decryption. This allows more flexible adjustment

between the number of storage servers and robustness.

The contributions are as follows:

Assume that there are n distributed storage servers and m

key servers in the cloud storage system. A message is

divided into k blocks and represented as a vector of k

symbols. Our contributions are as follows:

 We construct a secure cloud storage system

that supports the function of secure data

forwarding by using a threshold proxy re-

encryption scheme. The encryption scheme

supports decentralized erasure codes over

encrypted messages and forwarding operations

over encrypted and encoded messages. Our

system is highly distributed where storage

servers independently encode and forward

messages and key servers independently

perform partial decryption.

 We present a general setting for the parameters

of our

secure cloud storage system. Our parameter

setting of n=akc
 supersedes the previous one of

n=ak√k where c≥1.5 and a>√2. Our result n=

akc allows the number of storage servers be

much greater than the number of blocks of a

message. In practical systems, the number of

storage servers is much more than k. The

sacrifice is to slightly increase the total copies

of an encrypted message symbol sent to

storage servers. Nevertheless, the storage size

in each storage server does not increase

because each storage server stores an encoded

result (a codeword symbol), which is a

combination of encrypted message symbols.

II. RELATED WORK

 We briefly review parallel and distributed storage

systems, proxy re-encryption schemes, and integrity

checking mechanisms.

A) PARALLEL AND DISTRIBUTED

STORAGE SYSTEMS

 Parallel and Distributive storage systems has

undergone impressive change over recent years. New

architectures and applications have rapidly become the

central focus of the discipline. These changes are often a

result of cross fertilisation of parallel and distributed

technologies with other rapidly evolving technologies. It

is of paramount importance to review and assess these

new developments in comparison with recent research

achievements in the well-established areas of parallel and

distributed computing, from industry and the scientific

community. At the early years, the Network-Attached

Storage (NAS) [2] and the Network File System (NFS)

provide extra storage devices over the network such that

a user can access the storage devices via network

connection. Afterward, many improvements on

scalability, robustness, efficiency, and security were

proposed [1].A decentralized architecture for storage

systems offers good scalability, because a storage server

can join or leave without control of a central authority.

To provide robustness against server failures, a simple

method is to make replicas of each message and store

them in different servers. However, this method is

expensive as z replicas result in z times of expansion.

One way to reduce the expansion rate is to use erasure

codes to encode messages [3]. A message is encoded as a

codeword, which is a vector of symbols, and each storage

server stores a codeword symbol. A storage server failure

is modeled as an erasure error of the stored codeword

symbol. Random linear codes support distributed

encoding, that is, each codeword symbol is

independently computed. To store a message of k blocks,

each storage server linearly combines the blocks with

randomly chosen coefficients and stores the codeword

symbol and coefficients. To retrieve the message, a user

queries k storage servers for the stored codeword

symbols and coefficients and solves the linear system.

B) PROXY RE-ENCRYPTION SCHEMES

 Proxy re-encryption (PRE) allows a semi-trusted
proxy to convert a cipher- text intended for a user into a
ciphertext for another user without learning anything
about the underlying plaintext. Chunbo Ma et al. have
proposed a group based proxy re-encryption scheme to
convert a ciphertext from one group to another. Any
group member can independently decrypt the
ciphertexts encrypted to its group. Proxy re-encryption
schemes are proposed by Mambo and Okamoto [14]
and Blaze et al. [15]. A proxy server can transfer a
cipher text under a public Key PKA to a new one under
another public key PKB by using The re-encryption key
RK A→B. The server does not know the Plaintext
during transformation. In their work, message are first
Encrypted by the owner and then stored in a storage
server.

 When a user wants to share his messages, he
Confidentiality and supports the data forwarding
function. Our work further integrates encryption, re-
encryption, and encoding such that storage robustness is
strengthened. Type based proxy re-encryption schemes
[4] provide a better granularity on the granted right of a
re-encryption key. By using this kind of proxy re-
encryption schemes a user can decide which type of
messages and with whom he wants to share. Key-
private proxy re-encryption schemes are proposed by
Ateniese et al. [18]. In a proxy re-encryption scheme,
given a re-encryption key, a proxy server cannot
determine the identity of the recipient. This kind of
proxy re-encryption schemes provides higher privacy
against proxy servers. Although most proxy re-
encryption schemes use pairing operations, there exist
proxy re-encryption schemes without pairing [19].

 SS1 KS1

 SSn KSn

IJDCST @October Issue- V-1, I-6, SW-30
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

92 www.ijdcst.com

 USER A

 USER A

USER B

Fig. 1. A general system model of our work

C) INTEGRITY CHECKING FUNCTIONALITY

 Another important functionality about cloud storage is

the function of integrity checking. After a user stores

data into the storage system, he no longer possesses the

data at hand. The user may want to check whether the

data are properly stored in storage servers. The concept

of provable data possession [20], [21] and the notion of

proof of storage [22], [23], [24] are proposed. Later,

public auditability of stored data is addressed in [25].

Nevertheless all of them consider the messages in the

clear text form.

III. SCENARIO

We present the scenario of the storage system, the threat

model that we consider for the confidentiality issue, and

a discussion for a straightforward solution.

A) SYSTEM MODEL

As shown in Fig. 1, our system model consists of users, n

storage servers SS1, SS2, . . . , SSn, and m key servers

KS1, KS2, . . . KSm. Storage servers provide storage

services and key servers provide key management

services. They work independently. Our distributed

storage system consists of four phases: system setup,

data storage, data forwarding, and data retrieval. These

four phases are described as follows.

 In the system setup phase, the system manager

chooses system parameters and publishes them. Each

user A is assigned a public-secret key pair (PKA, SKA).

User A distributes his secret key SKA to key servers such

that each key server KSi holds a key share SKA,i , 1≤ i ≤

m. The key is shared with a threshold t.

 In the data storage phase, user A encrypts his

message M and dispatches it to storage servers. A

message M is decomposed into k blocks m1, m2, . . ., mk

and has an identifier ID. User A encrypts each block mi

into a cipher text Ci and sends it to v randomly chosen

storage servers. Upon receiving cipher texts from a user,

each storage server linearly combines them with

randomly chosen coefficients into a codeword symbol

and stores it. Note that a storage server may receive less

than k message blocks and we assume that all storage

servers know the value k in advance.

 In the data forwarding phase, user A forwards his

encrypted message with an identifier ID stored in storage

servers to user B such that B can decrypt the forwarded

message by his secret key. To do so, A uses his secret

key SKA and B’s public key PKB to compute a re-

encryption key RKID
A→B and then sends RKID

A→B to all

storage servers. Each storage server uses the encryption

key to re-encrypt its codeword symbol for later retrieval

requests by B. The re encrypted codeword symbol is the

combination of cipher texts under B’s public key. In

order to distinguish re-encrypted codeword symbols from

intact ones, we call them original codeword symbols and

encrypted codeword symbols, respectively.

 In the data retrieval phase, user A requests to retrieve

a message from storage servers. The message is either

stored by him or forwarded to him. User A sends a

retrieval request to key servers. Upon receiving the

retrieval request and executing a proper authentication

process with user A, each key server KSi requests u

randomly chosen storage servers to get codeword

symbols and does partial decryption on the received

codeword symbols by using the key share SKA,i. Finally,

user A combines the partially decrypted codewor

symbols to obtain the original message M.

System recovering. When a storage server fails, a new

one is added. The new storage server queries k available

storage servers, linearly combines the received codeword

symbols as a new one and stores it. The system is then

recovered.

B) THREAT MODEL

 We consider data confidentiality for both data storage

and data forwarding. In this threat model, an attacker

wants to break data confidentiality of a target user. To do

so, the attacker colludes with all storage servers, non

target users, and up to (t-1) key servers. The attacker

analyzes stored messages in storage servers, the secret

keys of non target users, and the shared keys stored in

key servers. Note that the storage servers store all re-

encryption keys provided by users. The attacker may try

to generate a new re-encryption key from stored re-

encryption keys. We formally model this attack by the

standard chosen plaintext attack of the proxy Re-

encryption scheme in a threshold version, as shown in

Fig 2. A cloud storage system modeled in the above is

secure if no probabilistic polynomial time attacker wins

the game with a non negligible advantage.

Challenger Attacker

Parameter

 Setup phase Target user T

(t-1) key shares of SKT

Secrete key queries (except T)

Key query phase

 re-encryption key queries

(except T to other user)

IJDCST @October Issue- V-1, I-6, SW-30
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

93 www.ijdcst.com

M0, M1, ID0, ID1

Challenge phase

b €R {0, 1} Enc (PKT, IDb, Mb)

Output phase b’

 Attacker wins if b’=b

Fig. 2. The security game for the chosen plaintext

attack.

 A secure cloud storage system implies that an

unauthorized user or server cannot get the content of

stored messages, and a storage server cannot generate re-

encryption keys by himself. If a storage server can

generate a re-encryption key from the target user to

another user B, the attacker can win the security game by

re-encrypting the ciphertext to B and decrypting the

reencrypted ciphertext using the secret key SKB.

Therefore, this model addresses the security of data

storage and data forwarding.

C) A STRAIGHTFORWARD SOLUTION

 A straightforward solution to supporting the data

forwarding function in a distributed storage system is as

follows: When the owner A wants to forwarding a

message to user B, he downloads the encrypted message

and decrypts it by using his secret key. He then encrypts

the message by using B’s public key and uploads the new

cipher text. When B wants to retrieve the forwarded

message from A, he downloads the cipher text and

decrypts it by his secret

key.The whole data forwarding process needs three

communication rounds for A’s downloading and

uploading and B’s downloading. The communication

cost is linear in the length of the forwarded message. The

computation cost is the decryption and encryption for the

owner A, and the decryption for user B.

 Proxy re-encryption schemes can significantly

decrease communication and computation cost of the

owner. In a proxy reencryption scheme, the owner sends

a re-encryption to storage servers such that storage server

perform the re-encryption operation for him. Thus, the

communication cost of the owner is independent of the

length of forwarded message and the computation cost of

re-encryption is taken care of by storage servers. Proxy

re-encryption schemes significantly reduce the overhead

of the data forwarding function in a secure storage

system.

IV. CONSTRUCTION

Before presenting our storage system, we briefly

introduce the algebraic setting, the hardness assumption,

and an erasure code over exponents, and our approach.

 Bilinear map: Let G1 and G2 be cyclic multiplicative

groups with a prime order p and g € G1 be a generator. A

map ẽ: G1 ×G1→G2 is a bilinear map if it is efficiently

computable and has the properties of bilinearity and non

degeneracy: for any x, y € Zp*, ẽ (gx, gy) = ẽ (g, g) xy

and ẽ (g, g) is not the identity element in G2. Let Gen

(1λ) be an algorithm generating (g, ẽ, G1, G2, p), where λ

is the length of p. Let x €R X denote that x is randomly

chosen from the set X.

 Decisional bilinear Diffie-Hellman assumption: This

assumption is that it is computationally infeasible to

distinguish distribution (g, gx, gy, gz, ẽ (g, g) xyz) and

(g, gx, gy, gz, ẽ (g, g) r) where x, y, z, r €R Zp*.

Formally, for any probabilistic polynomial time

algorithm Ά, the following is negligible (in λ):

 | Pr [Ά (g, gx, gy, gz, Qb) = b: x, y, z, r €R

Zp*,

Q0 = ẽ (g, g) xyz; Q1 = ẽ (g, g) r; b €R {0, 1}]-

1∕2|.

Erasure coding over exponents: We consider that the

message domain is the cyclic multiplicative group G2

described above. An encoder generates a generator

matrix G = [gi, j] for 1≤ i ≤ k, 1≤ j ≤ n as follows: for each

row, the encoder randomly selects an entry and randomly

sets a value form Zp* to the entry. The encoder repeats

this step v times with replacement for each row. An entry

of a row can be selected multiple times but only set to

one value. The value of the rest entries are set to 0. Let

the message be (m1, m2….mk) € G2k. The encoding

process is to generate (w1, w2…..wn) € G2k, where wj =

m1gi, 1, m2gi, 2….mkgk, j for 1≤ j≤ n. The first step of the

decoding process is to compute the inverse of a k × k sub

matrix K of G.

 Our approach: We use a threshold proxy re-

encryption scheme with multiplication homomorphism

property. An encryption scheme is multiplicative

homomorphism if it supports a group operation ʘ on

encrypted plaintexts without decryption

D (SK, E (PK, m1) ʘ E (PK, m2)) = m1•m2,

Where E is the encryption function, D is the decryption

function, and (PK, SK) is a pair of public key and secret

key. Given two coefficients g1 and g2, two message

symbols m1 and m2 can be encoded to a codeword

symbol m1g1, m2g2 in the encrypted form

 C=E (PK, m1) g1 ʘ E (PK, m2) g2 = E (PK,

m1g1•m2g2).

Thus, a multiplicative homomorphic encryption scheme

supports the encoding operation over encrypted

messages. We then convert a proxy re-encryption scheme

with multiplicative homomorphic property into a

threshold version. A secret key is shared to key servers

with a threshold value t. In our system, to decrypt for a

set of k message symbols, each key server independently

queries 2 storage servers and partially decrypts two

encrypted codeword symbol.

A) ANALYSIS

 We analyze storage and computation complexities,

correctness, and security of our cloud storage system in

this section. Let the bitlength of an element in the group

G1 be l1 and G2 be l2. Let coefficient gi, j be randomly

chosen from {0, 1} l3.

Storage Cost: To store a message of k blocks, a storage

server SSj stores a codeword symbol (b, αj, г, γj) and the

coefficient vector (g1, j, g2, j,….,gk, j). There are total of

(1+2l1 +l2+kl3) bits. The average cost for a message bit

stored in a storage server is (1+2l1 +l2+kl3) ∕kl2 bits.

IJDCST @October Issue- V-1, I-6, SW-30
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

94 www.ijdcst.com

Computation Cost: We measure the computation cost

by the number of pairing operation, modular

exponentiations in G1 and G2, modular multiplications in

G1 and G2, and arithmetic operation over GF (p). These

operations are denoted as Pairing, Exp1, Exp2, Mult1,

Mult2, and Fp, respectively. The cost is summarized in

Table 1. Computing an Fp take much less time than

computing a Mult1 or a Multi2. The time of computing

an Exp1 is 1.5[log p] times as much as the time of

computing a Multi1, on average, (by using the square and

multiply algorithm). Similarly, the time of computing an

Exp2 is 1.5[log p] times as much as the time of

computing a Multi2, on average.

Table 1

The Computation Cost of Each Algorithm

Operation

Computation Cost

Enc

k Pairing + k Exp1 + k

Mult2

Encode(for each

storage

server)

k Exp1 + Exp2 + (k-1)

Mult1 +

(k-1) Mult2

KeyRecover

O(t2) Fp

ReKeyGen

1 Exp1

ReEnc(for each storage

server)

1 Pairing + 1 Mult2

ShareDec(for t key

servers)

T Exp1

Combine

K Pairing + t Mult1 + (t-1)

Exp1 + O(t2 + k3) Fp +

k2

Exp2 + (k+1)k Mult2

Pairing: a pairing computation of ẽ.

Exp1 and Exp2: modular exponentiation computation

in G1 and

 G2, respectively.

Mult1 and Mult2: a modular multiplication

computation in G1

 and G2, respectively.

Fp: an arithmetic operation in GF (p).

V. CONCLUSION

 In this paper, we consider a cloud storage system

consists of storage servers and key servers. We integrate

a newly proposed threshold proxy re-encryption scheme

and erasure codes over exponents. The threshold proxy

encryption scheme supports encoding, forwarding, and

partial decryption operations in a distributed way. To

decrypt a message of k blocks that are encrypted and

encoded to n codeword symbols, each key server only

has to partially decrypt two codeword symbols in our

system. By using the threshold proxy re-encryption

scheme, we present a secure cloud storage system that

provides secure data storage and secure data forwarding

functionality in a decentralized structure. Moreover, each

storage server independently performs encoding and re-

encryption and each key server independently performs

partial decryption. Our storage system and some newly

proposed content addressable file systems and storage

system [27], [28], [29] are highly compatible. Our

storage servers act as storage nodes in a content

addressable storage system for storing content

addressable blocks. Our key servers act as access nodes

for providing a front-end layer such as a traditional file

system interface. Further study on detailed cooperation is

required.

REFERENCES
[1] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels,

R.Gu madi, S. Rhea, H. Weatherspoon, W.
Weimer, C. Wells, and B. Zhao, “Oceanstore: An
Architecture for Global-Scale Persistent Storage,”Proc.
NinthInt’l Conf. Architectural support for Programming
Languages and Operating Systems (ASPLOS), pp.190-
201, 2000.

[2] P. Druschel and A. Rowstron, “PAST: A Large-Scale,

Persistent Peer-to-Peer Storage Utility,” Proc. Eighth
Workshop Hottopics inOperating System (HotOS VIII),

pp. 75-80, 2001.

[3] Adya, W.J. Bolosky, M. Castro, G. Cermak, R. Chaiken,
J.R.Douceur, J. Howell, J.R. Lorch, M. Theimer, and R.

Wattenhofer,“Farsite: Federated, Available, and Reliable

Storage for an Incompletely Trusted Environment,” Proc.
Fifth Symp. Operating

[4] Haeberlen, A. Mislove, and P. Druschel, “Glacier:

HighlyDurable, Decentralized Storage Despite Massive
Correlated Failures,”Proc. Second Symp. Networked

Systems Design and implementation (NSDI), pp. 143-158,

2005.

[5] Z. Wilcox-O’Hearn and B. Warner, “Tahoe: The Least-

Authority Filesystem,” Proc. Fourth ACM Int’l Workshop

Storage Security and Survivability (StorageSS), pp. 21-26,
2008.

[6] H.-Y. Lin and W.-G. Tzeng, “A Secure Decentralized

Erasure Code for Distributed Network Storage,” IEEE
Trans. Parallel and Distributed Systems, vol. 21, no. 11,

pp. 1586-1594, Nov. 2010.
[7] D.R. Brownbridge, L.F. Marshall, and B. Randell, “The

Newcastle Connection or Unixes of the World Unite!,”
Software Practice and Experience, vol. 12, no. 12,

pp. 1147-1162, 1982.

[8] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh,

and B. Lyon,“Design and

Implementation of the Sun

Network Filesystem,” Proc.USENIX Assoc. Conf.1

985.
[9] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and

K. Fu, “Plutus: Scalable Secure File Sharing on Untrusted

Storage,” Proc. Second USENIX Conf. File and Storage
Technologies (FAST), pp. 29-42, 2003.

[10] S.C. Rhea, P.R. Eaton, D. Geels, H. Weatherspoon, B.Y.

Zhao, and J. Kubiatowicz, “Pond: The Oceanstore
Prototype,” Proc.Second USENIX Conf. File and storage

Technologies (FAST), pp. 1-14, 2003.

[11] R. Bhagwan, K. Tati, Y.-C. Cheng, S. Savage, and G.M.
Voelker,“Total Recall: System Support for Automated

Availability Management,” Proc. First Symp. Networked

Systems Design and Implementation (NSDI), pp. 337-
350, 2004.

[12] A.G. Dimakis, V. Prabhakaran, and K. Ramchandran,

“Ubiquitous Access to Distributed Data in Large-Scale
Sensor Networks through Decentralized Erasure Codes,”

Proc. Fourth Int’l Symp. Information Processing in

Sensor Networks (IPSN), pp. 111-117, 2005.

IJDCST @October Issue- V-1, I-6, SW-30
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

95 www.ijdcst.com

[13] A.G. Dimakis, V. Prabhakaran, and K. Ramchandran,

“DecentralizedErasureCodesforDistributed Networked
Storage,” IEEE Trans. Information Theory, vol. 52, no.

6 pp. 2809-2816, June 2006.

[14] M. Mambo and E. Okamoto, “Proxy Cryptosystems:
Delegation of the Power to Decrypt Ciphertexts,” IEICE

Trans Fundamentals ofElectronics, Comm.and Computer

Sciences, vol. E80-A, no. 1, pp. 54-63, 1997.
[15] M. Blaze, G. Bleumer, and M. Strauss, “Divertible

Protocols and Atomic Proxy Cryptography,” Proc. Int’l

Conf. Theory and Application of Cryptographic
Techniques (EUROCRYPT), pp. 127-144, 1998.

[16] G. Ateniese, K. Fu, M. Green, and S. Hohenberger,
“Improved Proxy Re-Encryption Schemes with

Applications to Secure Distributed Storage,” ACM Trans.

Information and System Security, vol. 9, no. 1, pp. 1-30,
2006.

[17] Q. Tang, “Type-Based Proxy Re-Encryption and Its

Construction,” Proc. Ninth Int’l Conf. Cryptology in India:

Progress in Cryptology (INDOCRYPT), pp. 130-144,

2008.

[18] G. Ateniese, K. Benson, and S. Hohenberger, “Key-Private
Proxy Re-Encryption,” Proc. Topics in Cryptology (CT-

RSA), pp. 279-294,2009.

[19] J. Shao and Z. Cao, “CCA-Secure Proxy Re-Encryption
without Pairings,” Proc. 12th Int’l Conf. Practice and

Theory in Public Key Cryptography (PKC), pp. 357-376,

2009.
[20] G.Ateniese, R.Burns, R.Curtmola, J.Herring, L. Kissner,

Z. Peterson, and D. Song, “Provable Data Possession at

Untrusted Stores,” Proc. 14th ACM Conf. Computer and
Comm. Security (CCS), pp. 598-609, 2007.

[21] G. Ateniese, R.D. Pietro, L.V. Mancini, and G. Tsudik,

“Scalable and Efficient Provable Data Possession,” Proc.
Fourth Int’l Conf. Security and Privacy in Comm.

Netowrks (SecureComm), pp. 1-10, 2008.

[22] H. Shacham and B. Waters, “Compact Proofs of
Retrievability,” Proc. 14th Int’l Conf. Theory and

Application of Cryptology and Information Security

(ASIACRYPT), pp. 90-107, 2008.
[23] G. Ateniese, S. Kamara, and J. Katz, “Proofs of Storage

from Homomorphic Identification Protocols,” Proc. 15th

Int’l Conf. Theory and Application of Cryptology and
Information Security (ASIACRYPT), pp. 319-333, 2009.

[24] K.D. Bowers, A. Juels, and A. Oprea, “HAIL: A High-

Availability and Integrity Layer for Cloud Storage,” Proc.
16th ACM Conf. Computer and Comm. Security (CCS),

pp. 187-198, 2009.

[25] C. Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-
Preserving Public Auditing for Data Storage Security in

Cloud Computing,” Proc. IEEE 29th Int’l Conf. Computer

Comm. (INFOCOM), pp. 525-533, 2010.
[26] A. Shamir, “How to Share a Secret,” ACM Comm., vol.

22, pp. 612-613, 1979.

[27] C. Dubnicki, L. Gryz, L. Heldt, M. Kaczmarczyk, W.
Kilian, P.Strzelczak, J. Szczepkowski, C. Ungureanu, and

M. Welnicki,“Hydrastor: A Scalable Secondary Storage,”

Proc. Seventh Conf. Fileand Storage Technologies
(FAST), pp. 197-210, 2009.

[28] C. Ungureanu, B. Atkin, A. Aranya, S. Gokhale, S. Rago,

G.Calkowski, C. Dubnicki, and A. Bohra, “Hydrafs: A
High-Throughput File System for the Hydrastor Content-

Addressable Storage System,” Proc. Eighth USENIX
Conf. File and StorageTechnologies (FAST), p. 17, 2010.

[29] W. Dong, F. Douglis, K. Li, H. Patterson, S. Reddy, and P.

Shilane, “Tradeoffs in Scalable Data Routing for
Deduplication Clusters,” Proc. Ninth USENIX Conf. File

and Storage Technologies (FAST), p. 2,2011.

