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             Abstract— Cloud Computing has been envisioned as the next generation architecture of IT Enterprise. In contrast to traditional 

solutions, where the IT services are under proper physical, logical and personnel controls, Cloud Computing moves the 

application software and databases to the large data centers, where the management of the data and services may not be fully 

trustworthy. General encryption schemes protect data confidentiality, but also limit the functionality of the storage system 

because a few operations are supported over encrypted data. This method supports encoding over encrypted messages using 

secure key servers and forwards the secure data. This method fully integrates encrypting, encoding, and forwarding. Suitable 

parameters are suggested for the number of copies of message sent to storage servers. The storage servers are queried by key 

servers. These parameters allow more flexible adjustment between the number of storage servers and robustness.  

 

     Keywords— (Encoding, Decentralized erasure code, proxy re-encryption, threshold cryptography, secure storage system.) 

I. INTRODUCTION  

 

In cloud computing, moving data into the cloud offers 

great convenience to the users since they do not have to 

worry about the complexities of direct hardware 

management. Users just use the services without being 

concerned about how computation is done and storage is 

managed. In this paper, we focus on designing a cloud 

storage system for robustness, confidentiality, and 

functionality. A cloud storage system is considered as a 

large-scale distributed storage system that consists of 

many independent storage servers. Security remains the 

critical issue that concerns potential clients. Data 

robustness is a major requirement for storage systems. 

There have been many proposals of storing data over 

storage servers.  

     In this paper we address the main aspects related to 

security of cloud storage. It presents an attempt to 

propose an effective and flexible security policy and 

procedures explicit to enhance the Data storage security 

and forwarding in the cloud.  One way to provide data 

robustness is to replicate a message such that each 

storage server stores a copy of the message. It is very 

robust because the message can be retrieved as long as 

one storage server survives. Another way is to encode a 

message of k symbols into a codeword of n symbols by 

erasure coding. To store a message, each of its codeword 

symbols is stored in a different storage server. A storage 

server failure corresponds to an erasure error of the 

codeword symbol. As the number of failure servers is 

under the tolerance threshold of the erasure code, the 

message can be recovered from the codeword symbols 

stored in the available storage servers by the decoding 

process. This provides a tradeoff between the storage size 

and the tolerance threshold of failure servers. A 

decentralized erasure code is an erasure code that 

independently computes each codeword symbol for a 

message. Thus, the encoding process for a message can 

be split into n parallel tasks of generating codeword 

symbols. A decentralized erasure code is suitable for use 

in a distributed storage system. After the message  

 

 

 

symbols are sent to storage servers, each storage server 

independently computes a codeword symbol for the 

received message symbols and stores it. This finishes the 

encoding and storing process. The recovery process is the 

same. 

          Storing data in a third party’s cloud system results 

in risky data confidentiality. For good confidentiality for 

messages in storage servers, a user can encrypt messages 

by a cryptographic method before applying an erasure 

code method to encode and store messages. When he 

wants to use a message, he needs to retrieve the 

codeword symbols from storage servers, decode them, 

and then decrypt them by using cryptographic keys. 

There are three problems in the above straightforward 

integration of encryption and encoding. First, the user 

has to do most computation and the communication 

traffic between the user and storage servers is high. 

Second, the user has to manage his cryptographic keys. If 

the user’s device of storing the keys is lost or 

compromised, the security is broken. Finally, besides 

data storing and retrieving, it is hard for storage servers 

to directly support other functions. For example, storage 

servers cannot directly forward a user’s messages to 

another one. The owner of messages has to retrieve, 

decode, decrypt and then forward them to another user. 

In this paper, we address the problem of forwarding data 

to another user by storage servers directly under the 

command of the data owner.  

      The system model has two servers distributed storage 

servers and key servers. It is risky to store cryptographic 

keys in a single device. The user distributes his 

cryptographic key to key servers that perform 

cryptographic functions on behalf of the user. The key 

servers are highly protected by security mechanisms. A 

new threshold proxy re-encryption scheme is proposed in 

this paper and integrated it with a secure decentralized 

code to form a secure distributed storage system. This 

encryption scheme supports encoding operations over 

encrypted messages and forwarding operations over 
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encrypted and encoded messages. The integration of 

encoding, encryption, and forwarding makes the storage 

system to efficiently meet the requirements of data 

robustness, data confidentiality, and data forwarding. The 

proposed system meets the requirements that storage 

servers independently perform encoding and re -

encryption and key servers independently perform partial 

decryption. This allows more flexible adjustment 

between the number of storage servers and robustness. 

 

The contributions are as follows: 

Assume that there are n distributed storage servers and m 

key servers in the cloud storage system. A message is 

divided into k blocks and represented as a vector of k 

symbols. Our contributions are as follows: 

 We construct a secure cloud storage system 

that supports the function of secure data 

forwarding by using a threshold proxy re-

encryption scheme. The encryption scheme 

supports decentralized erasure codes over 

encrypted messages and forwarding operations 

over encrypted and encoded messages. Our 

system is highly distributed where storage 

servers independently encode and forward 

messages and key servers independently 

perform partial decryption. 

 We present a general setting for the parameters 

of our 

secure cloud storage system. Our parameter 

setting of n=akc
  supersedes the previous one of 

n=ak√k where c≥1.5 and a>√2. Our result n= 

akc allows the number of storage servers be 

much greater than the number of blocks of a 

message. In practical systems, the number of 

storage servers is much more than k. The 

sacrifice is to slightly increase the total copies 

of an encrypted message symbol sent to 

storage servers. Nevertheless, the storage size 

in each storage server does not increase 

because each storage server stores an encoded 

result (a codeword symbol), which is a 

combination of encrypted message symbols. 

 

II. RELATED WORK 

 We briefly review parallel and distributed storage 

systems, proxy re-encryption schemes, and integrity 

checking mechanisms. 

 
A) PARALLEL  AND  DISTRIBUTED  

STORAGE  SYSTEMS 

 

    Parallel and Distributive storage systems has 

undergone impressive change over recent years. New 

architectures and applications have rapidly become the 

central focus of the discipline. These changes are often a 

result of cross fertilisation of parallel and distributed 

technologies with other rapidly evolving technologies. It 

is of paramount importance to review and assess these 

new developments in comparison with recent research 

achievements in the well-established areas of parallel and 

distributed computing, from industry and the scientific 

community. At the early years, the Network-Attached 

Storage (NAS) [2] and the Network File System (NFS) 

provide extra storage devices over the network such that 

a user can access the storage devices via network 

connection. Afterward, many improvements on 

scalability, robustness, efficiency, and security were 

proposed [1].A decentralized architecture for storage 

systems offers good scalability, because a storage server 

can join or leave without control of a central authority. 

To provide robustness against server  failures, a simple 

method is to make replicas of each message and store 

them in different servers. However, this method is 

expensive as z replicas result in z times of expansion. 

One way to reduce the expansion rate is to use erasure 

codes to encode messages [3]. A message is encoded as a 

codeword, which is a vector of symbols, and each storage 

server stores a codeword symbol. A storage server failure 

is modeled as an erasure error of the stored codeword 

symbol. Random linear codes support distributed 

encoding, that is, each codeword symbol is 

independently computed. To store a message of k blocks, 

each storage server linearly combines the blocks with 

randomly chosen coefficients and stores the codeword 

symbol and coefficients. To retrieve the message, a user 

queries k storage servers for the stored codeword 

symbols and coefficients and solves the linear system. 

 
B) PROXY RE-ENCRYPTION SCHEMES 

     Proxy re-encryption (PRE) allows a semi-trusted 
proxy to convert a cipher- text intended for a user into a 
ciphertext for another user without learning anything 
about the underlying plaintext. Chunbo Ma et al. have 
proposed a group based proxy re-encryption scheme to 
convert a ciphertext from one group to another. Any 
group member can independently decrypt the 
ciphertexts encrypted to its group.  Proxy re-encryption 
schemes are proposed by Mambo and Okamoto [14] 
and Blaze et al. [15]. A proxy server can transfer a 
cipher text under a public Key PKA to a new one under 
another public key PKB by using The re-encryption key 
RK A→B. The server does not know the Plaintext 
during transformation. In their work, message are first 
Encrypted by the owner and then stored in a storage 
server.  

       When a user wants to share his messages, he 
Confidentiality and supports the data forwarding 
function. Our work further integrates encryption, re-
encryption, and encoding such that storage robustness is 
strengthened. Type based proxy re-encryption schemes 
[4] provide a better granularity on the granted right of a 
re-encryption key. By using this kind of proxy re-
encryption schemes a user can decide which type of 
messages and with whom he wants to share. Key-
private proxy re-encryption schemes are proposed by 
Ateniese et al. [18]. In a proxy re-encryption scheme, 
given a re-encryption key, a proxy server cannot 
determine the identity of the recipient. This kind of 
proxy re-encryption schemes provides higher privacy 
against proxy servers. Although most proxy re-
encryption schemes use pairing operations, there exist 
proxy re-encryption schemes without pairing [19]. 
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Fig. 1. A general system model of our work 
 

 

   

C) INTEGRITY CHECKING FUNCTIONALITY 

 
    Another important functionality about cloud storage is 

the function of integrity checking. After a user stores 

data into the storage system, he no longer possesses the 

data at hand. The user may want to check whether the 

data are properly stored in storage servers. The concept 

of provable data possession [20], [21] and the notion of 

proof of storage [22], [23], [24] are proposed. Later, 

public auditability of stored data is addressed in [25]. 

Nevertheless all of them consider the messages in the 

clear text form. 

 

III. SCENARIO 

We present the scenario of the storage system, the threat 

model that we consider for the confidentiality issue, and 

a discussion for a straightforward solution. 

A) SYSTEM MODEL 

As shown in Fig. 1, our system model consists of users, n 

storage servers SS1,  SS2,  . . . , SSn, and m key servers 

KS1, KS2,  . . . KSm. Storage servers provide storage 

services and key servers provide key management 

services. They work independently. Our distributed 

storage system consists of four phases: system setup, 

data storage, data forwarding, and data retrieval. These 

four phases are described as follows. 

     In the system setup phase, the system manager 

chooses system parameters and publishes them. Each 

user A is assigned a public-secret key pair (PKA, SKA). 

User A distributes his secret key SKA to key servers such 

that each key server KSi holds a key share SKA,i ,  1≤  i ≤ 

m. The key is shared with a threshold t. 

     In the data storage phase, user A encrypts his 

message M and dispatches it to storage servers. A 

message M is decomposed into k blocks m1, m2,  . . ., mk 

and has an identifier ID. User A encrypts each block mi 

into a cipher text Ci and sends it to v randomly chosen 

storage servers. Upon receiving cipher texts from a user, 

each storage server linearly combines them with 

randomly chosen coefficients into a codeword symbol 

and stores it. Note that a storage server may receive less 

than k message blocks and we assume that all storage 

servers know the value k in advance. 

     In the data forwarding phase, user A forwards his 

encrypted message with an identifier ID stored in storage 

servers to user B such that B can decrypt the forwarded 

message by his secret key. To do so, A uses his secret 

key SKA and B’s public key PKB to compute a re-

encryption key RKID
A→B and then sends RKID

A→B to all 

storage servers. Each storage server uses the encryption 

key to re-encrypt its codeword symbol for later retrieval 

requests by B. The re encrypted codeword symbol is the 

combination of cipher texts under B’s public key. In 

order to distinguish re-encrypted codeword symbols from 

intact ones, we call them original codeword symbols and 

encrypted codeword symbols, respectively. 

     In the data retrieval phase, user A requests to retrieve 

a message from storage servers. The message is either 

stored by him or forwarded to him. User A sends a 

retrieval request to key servers. Upon receiving the 

retrieval request and executing a proper authentication 

process with user A, each key server KSi requests u 

randomly chosen storage servers to get codeword 

symbols and does partial decryption on the received 

codeword symbols by using the key share SKA,i. Finally, 

user A combines the partially decrypted codewor 

symbols to obtain the original message M. 

 

System recovering. When a storage server fails, a new 

one is added. The new storage server queries k available 

storage servers, linearly combines the received codeword 

symbols as a new one and stores it. The system is then 

recovered. 

 

B) THREAT MODEL 

    We consider data confidentiality for both data storage 

and data forwarding. In this threat model, an attacker 

wants to break data confidentiality of a target user. To do 

so, the attacker colludes with all storage servers, non 

target users, and up to (t-1) key servers. The attacker 

analyzes stored messages in storage servers, the secret 

keys of non target users, and the shared keys stored in 

key servers. Note that the storage servers store all re-

encryption keys provided by users. The attacker may try 

to generate a new re-encryption key from stored re-

encryption keys. We formally model this attack by the 

standard chosen plaintext attack of the proxy Re-

encryption scheme in a threshold version, as shown in 

Fig 2. A cloud storage system modeled in the above is 

secure if no probabilistic polynomial time attacker wins 

the game with a non negligible advantage. 

 

 

Challenger                Attacker 

 

Parameter 

  Setup phase                        Target user T 

 

 

(t-1) key shares of SKT 

 

Secrete key queries (except T) 

 

Key query phase            

 re-encryption key queries 

(except T to other user) 
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b €R {0, 1}         Enc (PKT, IDb, Mb) 

 

 

Output phase           b’ 

 

  Attacker wins if b’=b 

 

 

Fig. 2. The security game for the chosen plaintext 

attack. 

 
    A secure cloud storage system implies that an 

unauthorized user or server cannot get the content of 

stored messages, and a storage server cannot generate re-

encryption keys by himself. If a storage server can 

generate a re-encryption key from the target user to 

another user B, the attacker can win the security game by 

re-encrypting the ciphertext to B and decrypting the 

reencrypted ciphertext using the secret key SKB. 

Therefore, this model addresses the security of data 

storage and data forwarding. 

C) A STRAIGHTFORWARD SOLUTION 

    A straightforward solution to supporting the data 

forwarding function in a distributed storage system is as 

follows: When the owner A wants to forwarding a 

message to user B, he downloads the encrypted message 

and decrypts it by using his secret key. He then encrypts 

the message by using B’s public key and uploads the new 

cipher text. When B wants to retrieve the forwarded 

message from A, he downloads the cipher text and 

decrypts it by his secret 

key.The whole data forwarding process needs three 

communication rounds for A’s downloading and 

uploading and B’s downloading. The communication 

cost is linear in the length of the forwarded message. The 

computation cost is the decryption and encryption for the 

owner A, and the decryption for user B. 

     Proxy re-encryption schemes can significantly 

decrease communication and computation cost of the 

owner. In a proxy reencryption scheme, the owner sends 

a re-encryption to storage servers such that storage server 

perform the re-encryption operation for him. Thus, the 

communication cost of the owner is independent of the 

length of forwarded message and the computation cost of 

re-encryption is taken care of by storage servers. Proxy 

re-encryption schemes significantly reduce the overhead 

of the data forwarding function in a secure storage 

system.   

IV. CONSTRUCTION 

Before presenting our storage system, we briefly 

introduce the algebraic setting, the hardness assumption, 

and an erasure code over exponents, and our approach. 

     Bilinear map: Let G1 and G2 be cyclic multiplicative 

groups with a prime order p and g € G1 be a generator. A 

map  ẽ: G1 ×G1→G2 is a bilinear map if it is efficiently 

computable and has the properties of bilinearity and non 

degeneracy: for any x, y € Zp*, ẽ (gx, gy) = ẽ (g, g) xy 

and ẽ (g, g) is not the identity element in G2. Let Gen 

(1λ) be an algorithm generating (g, ẽ, G1, G2, p), where λ 

is the length of p. Let x €R X denote that x is randomly 

chosen from the set X. 

 Decisional bilinear Diffie-Hellman assumption: This 

assumption is that it is computationally infeasible to 

distinguish distribution (g, gx, gy, gz, ẽ (g, g) xyz) and 

(g, gx, gy, gz, ẽ (g, g) r) where x, y, z, r €R Zp*. 

Formally, for any probabilistic polynomial time 

algorithm Ά, the following is negligible (in λ): 

  

       | Pr [Ά (g, gx, gy, gz, Qb) = b: x, y, z, r €R 

Zp*, 

Q0 = ẽ (g, g) xyz; Q1 = ẽ (g, g) r; b €R {0, 1}]-

1∕2|. 

 

Erasure coding over exponents: We consider that the 

message domain is the cyclic multiplicative group G2 

described above. An encoder generates a generator 

matrix G = [gi, j] for 1≤ i ≤ k, 1≤ j ≤ n as follows: for each 

row, the encoder randomly selects an entry and randomly 

sets a value form Zp* to the entry. The encoder repeats 

this step v times with replacement for each row. An entry 

of a row can be selected multiple times but only set to 

one value. The value of the rest entries are set to 0. Let 

the message be (m1, m2….mk) € G2k. The encoding 

process is to generate (w1, w2…..wn) € G2k, where wj = 

m1gi, 1, m2gi, 2….mkgk, j for 1≤ j≤ n. The first step of the 

decoding process is to compute the inverse of a k × k sub 

matrix K of G. 

        Our approach: We use a threshold proxy re-

encryption scheme with multiplication homomorphism 

property. An encryption scheme is multiplicative 

homomorphism if it supports a group operation ʘ on 

encrypted plaintexts without decryption 

D (SK, E (PK, m1) ʘ E (PK, m2)) = m1•m2, 

Where E is the encryption function, D is the decryption 

function, and (PK, SK) is a pair of public key and secret 

key. Given two coefficients g1 and g2, two message 

symbols m1 and m2 can be encoded to a codeword 

symbol m1g1, m2g2 in the encrypted form 

        C=E (PK, m1) g1 ʘ E (PK, m2) g2 = E (PK, 

m1g1•m2g2). 

Thus, a multiplicative homomorphic encryption scheme 

supports the encoding operation over encrypted 

messages. We then convert a proxy re-encryption scheme 

with multiplicative homomorphic property into a 

threshold version. A secret key is shared to key servers 

with a threshold value t. In our system, to decrypt for a 

set of k message symbols, each key server independently 

queries 2 storage servers and partially decrypts two 

encrypted codeword symbol. 

A) ANALYSIS 

    We analyze storage and computation complexities, 

correctness, and security of our cloud storage system in 

this section. Let the bitlength of an element in the group 

G1 be l1 and G2 be l2. Let coefficient gi, j be randomly 

chosen from {0, 1} l3. 

Storage Cost: To store a message of k blocks, a storage 

server SSj stores a codeword symbol (b, αj, г, γj) and the 

coefficient vector (g1, j, g2, j,….,gk, j). There are total of 

(1+2l1 +l2+kl3) bits. The average cost for a message bit 

stored in a storage server is (1+2l1 +l2+kl3) ∕kl2 bits. 
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Computation Cost: We measure the computation cost 

by the number of pairing operation, modular 

exponentiations in G1 and G2, modular multiplications in 

G1 and G2, and arithmetic operation over GF (p). These 

operations are denoted as Pairing, Exp1, Exp2, Mult1, 

Mult2, and Fp, respectively. The cost is summarized in 

Table 1. Computing an Fp take much less time than 

computing a Mult1 or a Multi2. The time of computing 

an Exp1 is 1.5[log p] times as much as the time of 

computing a Multi1, on average, (by using the square and 

multiply algorithm). Similarly, the time of computing an 

Exp2 is 1.5[log p] times as much as the time of 

computing a Multi2, on average. 

 
Table 1 

The Computation Cost of Each Algorithm 

 

 
Operation 

 
Computation Cost 

 
Enc 

 
k Pairing + k Exp1 + k 

Mult2 

 
Encode(for each 

storage 

server) 

 
k Exp1 + Exp2 + (k-1) 

Mult1 + 

(k-1) Mult2 

 
KeyRecover 

 
O(t2) Fp 

 
ReKeyGen 

 
1 Exp1 

 
ReEnc(for each storage 

server) 

 
1 Pairing + 1 Mult2 

 
ShareDec(for t key 

servers) 

 
T Exp1 

 
Combine 

 
K Pairing + t Mult1 + (t-1) 

Exp1 + O(t2 + k3) Fp + 

k2 

Exp2 + (k+1)k Mult2 

 
Pairing: a pairing computation of ẽ. 

Exp1 and Exp2: modular exponentiation computation 

in G1 and     

   G2, respectively. 

Mult1 and Mult2: a modular multiplication 

computation in G1    

   and G2, respectively. 

Fp: an arithmetic operation in GF (p). 

V. CONCLUSION 

    In this paper, we consider a cloud storage system 

consists of storage servers and key servers. We integrate 

a newly proposed threshold proxy re-encryption scheme 

and erasure codes over exponents. The threshold proxy 

encryption scheme supports encoding, forwarding, and 

partial decryption operations in a distributed way. To 

decrypt a message of k blocks that are encrypted and 

encoded to n codeword symbols, each key server only 

has to partially decrypt two codeword symbols in our 

system. By using the threshold proxy re-encryption 

scheme, we present a secure cloud storage system that 

provides secure data storage and secure data forwarding 

functionality in a decentralized structure. Moreover, each 

storage server independently performs encoding and re-

encryption and each key server independently performs 

partial decryption. Our storage system and some newly 

proposed content addressable file systems and storage 

system [27], [28], [29] are highly compatible. Our 

storage servers act as storage nodes in a content 

addressable storage system for storing content 

addressable blocks. Our key servers act as access nodes 

for providing a front-end layer such as a traditional file 

system interface. Further study on detailed cooperation is 

required. 
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